Pedigree complete in | 2
gen |
Pedigree depth |
17
gen |
Pedigree Completeness Index (5 gen) |
0,00
|
Generation interval (average, 4 gen) | Not available |
Ancestor birthyear (average, 4 gen) | Not available |
French Trotter |
0,00
% |
Russian Trotter |
0,00
% |
Standardbred |
100,00
% |
|
Inbreeding Coefficient (The Blood Bank ) | (3,444 %) |
Inbreeding Coefficient (STC) | Not available |
|
Peter the Great | 100 paths, 25 crosses (closest: 6) | Spencer Scott | 5 + 4x | Axworthy | 72 paths, 22 crosses (closest: 6) | Dillon Axworthy | (6+6+10) + (5x+6) | Scotland | (5+6) + 5 | Hambletonian | 9071 paths, 240 crosses (closest: 9) | Peter Volo | (6+6y+7+9) + 5 | George Wilkes | 2800 paths, 137 crosses (closest: 8) | McKinney | 24 paths, 14 crosses (closest: 6) | Guy Axworthy | 24 paths, 14 crosses (closest: 6) | Peter Scott | (6+7+7) + 6 | Roya Mckinney (Mare) | (6+7+7) + 6 | Belwin | (7+8+8) + 5 | Happy Medium | 132 paths, 28 crosses (closest: 8) | Nervolo Belle (Mare) | (7+7+8+9+10) + 6 | Guy Wilkes | 80 paths, 21 crosses (closest: 7) | Spencer | (7+7) + 6x | Lady Bunker (Mare) | 306 paths, 43 crosses (closest: 8) | Princess Royal (Mare) | (7+8+8+9) + 7 | Electioneer | 264 paths, 41 crosses (closest: 9) | Bingen | 36 paths, 15 crosses (closest: 8) | Emily Ellen (Mare) | (8+9+9) + (7x+8) | Beautiful Bells (Mare) | 48 paths, 16 crosses (closest: 8) | Lee Axworthy | (7+8+9+9) + 8 | Minnehaha (Mare) | 84 paths, 20 crosses (closest: 8) | Baronmore | (9+9+11) + (7+8) | Baron Wilkes | (10+10+10+10+10+10+12) + (8+9x+9) | Todd | (8+9+10+10) + (8x+9) | Chimes | (8+9+9+9+10) + 8 | Adbell | (9+10+10+10) + 7 | Barongale | 8 + 7 | May King | 39 paths, 16 crosses (closest: 9) | Young Miss (Mare) | 39 paths, 16 crosses (closest: 9) | Onward | (8+9+9+10+10+11+12+12+13) + 9 | Fanella (Mare) | (9+9+10+11+11) + (9x+10) | Miss Bertha C. (Mare) | 10 + 6 | Alcantara | (9+10+10+10+11+12) + 9 | Eva (Mare) | 10 + 7x | Arion | (10+10+10+11+11+12+12) + (10x+11) | Red Wilkes | 68 paths, 21 crosses (closest: 10) | Maggie H. (Mare) | (9+9+10+10+10+11+12+12) + 11 | Harold | (11+11+12) + (9+10x) | Lord Russell | 11 + 8 |
|